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Algebraic decay of velocity fluctuations near a wall
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Computer simulations of the dynamics of a colloidal particle suspended in a fluid confined by an interface
show that the asymptotic decay of the velocity correlation functions is algebraic. The exponents of the long-
time tails depend on the direction of motion of the particle relative to the surface, as well as on the specific
nature of the boundary conditions. In particular, we find that for the angular velocity correlation function, the
decay in the presence of a slip surface is faster than the one corresponding to a stick one. An intuitive picture
is introduced to explain the various long-time tails, and the simulations are compared with theoretical expres-
sions where available.@S1063-651X~98!00612-6#
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I. INTRODUCTION

The dynamical behavior of bulk colloidal suspensions
on the whole, fairly well understood@1#. By means of dif-
fusing wave spectroscopy~DWS! @2,3#, the time regime in
which hydrodynamic modes relax has been studied, and e
in this regime, experiments and theory are in agreem
Whereas DWS has been applied to study the dynamic
bulk suspension, the effect of confining surfaces on the
namics is less well understood, despite its relevance in s
ations of great practical interest, such as diffusion in por
media.

In this paper we concentrate on the simplest possible c
fining geometry, namely, a semi-infinite fluid confined by
planar interface. It is well known that the presence of a sin
wall modifies the hydrodynamic response of the fluid, an
has been suggested that this feature is used by some m
organisms to enhance their motility@4#. We will focus on the
dynamics of colloidal particles close to a surface at ti
scales short compared to the time it takes the particle
displace over a distance comparable to their own radius. T
corresponds to the ‘‘short-time’’ regime in the dynamics
colloidal suspensions, in which hydrodynamic excitatio
decay. In this regime, the particles experience the influe
of such modes. When, in what follows, we refer to ‘‘lon
times,’’ we mean the time scale of the asymptotic decay
this ‘‘short-time’’ regime. For a typical suspension, the
times are of order;1028 s, while the time it takes a par
ticle to displace over a distance equal to its radius is m
longer (;1023 s).

Until the early 1970s it was thought that the decay of
velocity of a suspended particle would be exponential. Ho
ever, in their pioneering work, Alder and Wainwright@5#
showed that the velocity autocorrelation function~VACF!,
Cv(t)5^vW (t)•vW (0)&, of a tagged particle in a hard-sphe
fluid moving with velocity vW (t) exhibited an algebraic
decay at long times,Cv(t)5(d21)MCv(0)/@dr„4p(n
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1D)…d/2td/2#, whered is the dimensionality of the system,M
the mass of the particle,r and n are the density and the
kinematic viscosity of the solvent, respectively, andD is the
diffusion coefficient of the tagged particle. As was alrea
argued by Alder and Wainwright, this behavior is quite ge
eral as a consequence of the conservation of momentum.
argument also implies that the angular velocity autocorre
tion function ~AVACF! of a tagged particle with angula
velocity v(t), Cv(t)5^v(t)•v(0)&, will decay algebra-
ically at long times,Cw(t);1/td/211 @6#, and this has indeed
been found in computer simulations@7#. The study of corre-
lation functions is also interesting because their integrals
related to transport coefficients, connecting thus the dyna
cal properties of the constituent particles of the system w
its macroscopic response. In particular, the time-depend
diffusion coefficient is obtained as the integral of the VAC

The effect that a bounding surface has on the decay of
velocity of an initially moving particle has been analyze
theoretically by Gotoh and Kaneda@8#. These authors con
sidered the VACF of a single sphere of radiusr at a distance
h from asticksurface, i.e., an interface where the velocity
the fluid and the surface are equal. They showed, by a
turbative calculation that becomes exact for asymptotica
long times, that the wall generates both an anisotropic re
ation and that it modifies the power law of the long-tim
algebraic decay. If the time needed for vorticity to diffuse t
distance between the particle and the wall istw[h2/n, they
predict for timest@tw ,

Cv
uu~ t !5

Auu

t5/2
1OS 1

t7/2D , Cv
'~ t !5

A'

t7/2
1OS 1

t9/2D ~1!

with the amplitudes given by

Auu5
MCv

uu~0!

nr

h2

~4pn!3/2
, A'5

MCv
'~0!

4n2r

h4

~4pn!3/2
,

~2!

whereCv
uu(0) andCv

' are the initial values of the VACF for
a particle moving initially parallel and perpendicular to th
wall, respectively.

ry,
7288 © 1998 The American Physical Society



s
m

s
ic
th
he
ld

o
o
th
tly
re
ve
o-
ha
d

n-
d
ca
cle
fu

he

io

vi
ci
a
o

ue
t i
e

. In
of

sired

or
nd-
be
nly
m
ple

or
of
, a
at
s
ini-

fre-
be

or-
is
et
hy-
he
ns-
di-
real

oss
ace
e

he
ral

nce

en-
an

.

lip

PRE 58 7289ALGEBRAIC DECAY OF VELOCITY FLUCTUATIONS . . .
One may expect that the change in boundary condition
the surface will make a qualitative difference for the dyna
ics of the colloids. For example, one may consider aslip
interface, where the tangential component of the stres
continuous across the surface, and which is characterist
a fluid/fluid interface. In fact, there exist examples where
dynamics of colloidal particles is sensitive not only to t
confinement, but to the specific behavior of the velocity fie
at the interface@9#.

Therefore, we have performed computer simulations
the short-time dynamics of a particle in the presence of b
a slip and a stick surface. We have focused both on
VACF and AVACF, as these two functions are most direc
linked to experimentally observable quantities. Before p
senting our results in Sec. III, we first introduce an intuiti
picture that will allow us to interpret our results, and pr
vides a physical way of understanding the modifications t
a bounding surface induces in the relaxation of the hydro
namic modes. We conclude the paper with a discussion
our results.

II. THEORETICAL DESCRIPTION

The short-time dynamics of a colloidal particle is co
trolled by the decay of the longest-lived hydrodynamic mo
in the solvent. In the case of an unbounded fluid, the lo
amplitude of the sound modes excited initially by the parti
decays much faster than the vorticity, which relaxes dif
sively. The algebraic tailCv(t);1/td/2 can be simply under-
stood as a coupling of the velocity of the particle to t
diffusion of vorticity @10#. The velocity fieldvW of a low
Reynolds number incompressible flow satisfies the diffus
equation,

]vW ~rW,t !

]t
5n“2vW ~rW,t !. ~3!

A particle of massM located originally atrW0 and with
velocity uW 0 , will create a flow field in the fluid. This field is
equal to the one generated by a small fluid elementdV cen-
tered in rW0 , with initial velocity vW 0 such that MuW 0

5rvW 0dV. In the limit dV→0, the initial velocity field is

vW (rW,t50)5(MuW 0 /r)d(rW2rW0). From Eq.~3!, it then follows

vW ~rW,t !5H expF2
r 2

4nt G
~4pnt !d/2

~12 r̂ r̂ !

2
1

2~pr 2!d/2
gS d

2
,

r 2

4nt D ~12dr̂ r̂ !J •vW 0 , ~4!

whereg is the incomplete gamma function. From the pre
ous expression, it is easy to check that indeed the velo
induced by a localized perturbation decays asymptotically
1/td/2. The presence of a single bounding surface will n
disturb the diffusive decay of the velocity at long times d
to vorticity. The only feature we have to take into accoun
the fact that the wall will modify the induced flow field. W
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account for this by using the standard method of images
this method, one places additional sources in the region
space not accessible to the system to enforce the de
boundary condition at the interface@11#. However, a simple
point image, as is used when considering mass diffusion
electrostatic potentials, is not sufficient to enforce a bou
ary condition for a vectorial field, such as the velocity. To
more precise, for slip boundary conditions, we need o
impose the condition that there is no flux of momentu
across the interface. This can be accomplished by a sim
image particle moving with the appropriate velocity. F
stick boundary conditions, however, all the components
the velocity have to vanish at the surface. In this case
simple point image is not enough to fulfill the conditions
the wall. Blake@4# worked out the complete set of image
needed to reproduce the steady flow corresponding to an
tial point source. It has even been argued that at finite
quency, the flow in the presence of a solid wall cannot
described with a finite set of image singularities@12#. None-
theless, rather than attempting a rigorous description of v
ticity diffusion in the presence of a solid surface, in th
simplified theory we will consider the simplest image s
necessary to provide the basic features of the long-time
drodynamic behavior. Therefore, we will characterize t
solid surface by imposing that no momentum can be tra
ported along it. This description produces a boundary con
tion that resembles more a porous surface rather than a
solid wall, because there can still be momentum flux acr
the wall, but it contains the basic feature that a solid surf
resists the flow of fluid along it. The comparison with th
simulations will show that this assumption predicts t
proper temporal decay at long times, although it is in gene
quantitatively inaccurate, as could be expected.

Let us first consider that the particle is placed at a dista
hẑ above a slip interface located atz50. If at time t50 the
particle has a velocityu0ŷ, at later times the velocity at the
same point will be expressed as the sum of the velocity g
erated by the particle itself plus the one generated by
image source located at2hẑ moving with the same velocity
u0ŷ, as displayed in Fig. 1~a!. As can be derived from Eq
~4!, the long-time decay is given by

uuu
sl~ t !5

2~d21!

d

v0

~4pnt !d/2
1OS 1

td/211D . ~5!

FIG. 1. Image particle for a translating colloid above a s

surface, placed initially athẑ. ~a! Parallel motion,~b! perpendicular
motion.
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In order to avoid confusion when we consider later a st
surface, we have used the superscript ‘‘sl’’ to indicate t
the particle is moving in the presence of a slip interface,
opposed to the superscript ‘‘st’’ labeling a stick surface.

The interface does not modify the power of the tempo
decay in this particular situation. However, if the partic
moves perpendicularly to the interface, then the image p
ticle has to move in the opposite direction, as shown in F
1~b! In this case, the velocity at long times is given by

u'
sl~ t !5

4pv0h2

~d12!~4pnt !d/211
1OS 1

td/212D , ~6!

which shows that the interface induces a faster decay of
VACF, due to the interaction with the image.

If we consider a wall where stick boundary conditions a
satisfied, then the images should be modified accordingly
the particle is moving initially at a distancehẑ and parallel to
the wall with velocityu0ŷ, the image, located at2hẑ, has to
move in the opposite direction with velocity2u0ŷ. We then
get asymptotically,

uuu
st~ t !5

6p

~d21!~d12!

v0h2

~4pnt !d/211
1OS 1

td/212D , ~7!

which for three dimensions~3D! coincides with the decay
predicted by Eq.~1!, and recovers the proper dimension
behavior of the amplitude. However, as already mention
with this intuitive approach the numerical factor of the t
does not coincide with the prediction of Eq.~2!.

For motion perpendicular to the interface, we need to t
a quadrupole in order to impose that there is no flux para
to the wall. For example, in three dimensions, besides
image at2hẑ with velocity 2u0ẑ, one can enforce a van
ishing parallel velocity at the wall by placing an image rin
on the surface at a distance 2h from the origin, with a
strength twice the strength of the initial source, pointi
away from the origin. In this case, the combination of t
sources gives

u'
st~ t !5A

v0h4

~4pnt !d/212
1OS 1

td/213D , ~8!

whereA524p2/7 in 3D. It is worth noting that the algebrai
decay is characterized by a large power, 7/2 in three dim
sions. Clearly, the stick wall always induces a faster deca
the velocity than the slip interface for motion in any dire
tion, since it damps momentum more efficiently than a liqu
interface. For both kinds of interfaces, the motion perp
dicular to the surface always decays faster.

We can also use this intuitive approach to analyze h
the interface will modify the decay of the angular veloc
autocorrelation functions. In this case, we should look at
decay of the angular velocity if initially a torque is applied
the particle. If we calln̂ a vector normal to the surface of th
particle, located atrW0 , the angular velocityvW induced by an
initially applied force distribution,FW (rW,t)5FW @d(rW2rW02nW )
2d(rW2rW01nW )#d(t), can be shown to satisfy@13#
k
t
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vW 3rW5E e2nk2teikW•~rW2r 0
W !~12 k̂k̂!•~ IVW 0!sin~kW•nW !dkW ,

~9!

where the vectorrW means a vector joining the center of th
object to a point on its surface. Moreover,I is the moment of
inertia of the particle andVW 0 is the initial angular velocity of
the fluid, which is related to the total initial torqueTW applied
by the force distribution FW through TW 5*dn̂FW 3nW

[IVW 0d(t). Note that there is no net momentum transmitt
to the system. Similar to the case of the velocity, the mag
tude of the torque is related to the initial angular velocity
the particle in such a way thatVW 5vW 0 /r, wherevW 0 is its
initial angular velocity.

Let us first consider that the colloid rotates in the prese
of a slip surface. If the axis of rotation is parallel to th
interface, then in order to ensure that there is no compon
of the velocity field through the interface, we should place
image vortex which rotates in the opposite sense, as depi
in Fig. 2~a!. According to Eq.~9!, this initial perturbation
gives rise to an asymptotic decay of the angular velocity

v uu
sl~ t !5

3~4p!2

d11

h2T

~4pnt !d/212
1OS 1

td/213D . ~10!

If the axis of rotation is perpendicular to the interface
corotating source and image suffice to ensure that there i
net flux of momentum across the interface. This combinat
leads to a slower decay of the vorticity than in the previo
geometry, namely,

v'
sl~ t !5

8p

d11

T

~4pnt !d/211
1OS 1

td/212D . ~11!

In the case of stick boundary conditions, when the axis
rotation is parallel to the interface, the velocity along t
wall is zero if we take a corotating image particle, as d
played in Fig. 2~b! In this case the decay is then

v uu
st~ t !5

8p

d11

T

~4pnt !d/211
1OS 1

td/212D , ~12!

FIG. 2. Image set for a disk above a surface rotating with

axis parallel to the wall, placed initially athẑ. ~a! Slip surface,~b!
stick surface.
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which coincides with Eq.~11!, and has an amplitude whic
is twice the one corresponding to a rotating particle in
unbounded fluid. Finally, if the axis is perpendicular to t
interface, the image should rotate in the opposite sens
order to avoid the flow along the wall. This leads then to

v'
st~ t !5

~4p!2

d11

h2T

~4pnt !d/212
1OS 1

td/213D . ~13!

In this particular case, due to the symmetry of the t
sources, all the components of the velocity will vanish at
solid surface. This implies that the amplitude also has to
asymptotically correct in this case.

The previous analysis shows that the AVACF beha
differently close to an interface than the VACF. For an u
bounded fluid, the AVACF always decays with one pow
higher than the corresponding VACF. A stick surface alwa
produces a faster decay on the VACF than a slip interfa
The behavior of the AVACF in the presence of an interfa
is not simply related to the corresponding VACF. In fact, w
arrive at the rather surprising prediction that, for rotati
parallel to the interface, slip boundary conditions yield
faster decay of the AVACF than stick boundary condition

In Table I we have summarized the different exponents
the VACF and AVACF as a function of the geometry and t
boundary conditions.

Thus far we have focused on the decay of the veloc
field generated by a moving particle, disregarding its Brow
ian motion. Diffusion of the colloid during the decay of th
flow field will lead to mode coupling between flow and di
fusion. For an unbounded fluid, this so-called mode-coup
effect modifies the amplitude of the correlation functions, b
not the power law characterizing the long-time tail@14#. Us-
ing mode coupling theory, it is easy to show that, as in
unbounded fluid, mode-coupling leads now to the same
pressions obtained in this section ifn is substituted byn
1D, where D is the diffusion coefficient of the colloida
particle.

III. RESULTS

We have performed computer simulations to study
VACF and AVACF of a spherical particle suspended in
fluid, in contact with both a stick and a slip interface. To th

TABLE I. Powers of the algebraic tail for the VACF and th
AVACF in d dimensions. Ford52, Cv

' is not defined.

slip stick unbounded

Cv
uu d

2
d

2
11

Cv
' d

2
11

d

2
12

d

2

Cv
uu d

2
12

d

2
11

Cv
' d

2
11

d

2
12

d

2
11
n

in

e
e

s
-
r
s
e.
e

.
f

y
-

g
t

e
x-

e

end, we have used the lattice-Boltzmann model to desc
the fluid. The state of the fluid is specified by the avera
number of particles,n(c,r ,t), with velocity c, at each lattice
site r at time t. The time evolution of the distribution func
tions is determined by the discretized analog of the Bo
mann equation@15#, in which then(c,r ,t) evolves in discrete
time in two steps: propagation and collision. Collisions a
specified such that the time evolution of the hydrodynam
fields satisfies the linearized Navier-Stokes equations fo
isothermal fluid@15#. In this method, the solid surface whic
defines the colloidal particle and the confining surface
treated on the same footing, by modifying appropriately
collision step of the nodes adjacent to the surfaces@15#. Stick
boundary conditions are ensured by imposing bounce-b
of the incomingn(c,r ,t) along the links joining nodes of the
surface and the fluid, while slip boundary conditions are
forced by specular reflection. Stick boundary conditions
always satisfied at the surface of the colloidal particle, wh
we change from stick to slip boundary conditions for t
surface that bounds the fluid. The equations of motion of
particle are integrated using the self-consistent method
scribed in Ref.@7#. We calculated the VACF by giving an
initial velocity, vW (0), to acolloidal particle in an otherwise
quiescent fluid. In this description of the fluid, fluctuatio
are absent. Nonetheless, correlating the initial velocity of
freely moving particlevW (0) with its subsequent valuesvW (t)
while it relaxes is, according to Onsager’s regression hypo
esis, equivalent to calculating the VACF in a ‘‘real’’ fluctu
ating fluid @16#. The initial velocity given to the particle is
sufficiently small to ensure that its displacement is negligi
compared to the lattice spacing. Our units are such that
mass of the lattice particles, the lattice spacing, and the t
step are all unity, the densityr has a value of 24, and th
speed of soundc has a value of 1/A2. The mass of the col-
loidal particle is chosen to correspond to neutral buoyan
In all cases, the VACF is only calculated for times less th
the time it takes for a sound wave to cross the system
there are no finite-size effects to consider. In most of
cases, the asymptotic algebraic decay is reached within
simulation time, although in a few cases it is only the a
proach to it that is observable. We will start by analyzing t
decay of the correlation functions of a disk in two dime
sions, because a more detailed analysis is feasible sinc
can reach longer times than in their 3D counterparts. Aft
wards, we will focus on the more realistic situation of
sphere in three dimensions, where we can compare with
act theoretical predictions@8#.

Figures 3 and 4 show a log-log plot of the VACF for
disk in a 2D fluid both for slip and stick boundary cond
tions. For the sake of comparison, we also plot the VACF
the same particle in an unbounded fluid. The analysis of
preceding section assumed that only diffusion of velocity
relevant. This is indeed true in the asymptotic long-time
gime, but at sufficiently short times, compressibility effec
related to the emission and reflection of sound waves,
modify the relaxation of the colloid. In Figs. 3 and 4, th
diffusive decay of the VACF is only recovered at times
order tw , when momentum has diffused the distance b
tween the particle and the wall. This is also true for t
particle in the unbounded medium, although in this case m
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mentum has to diffuse over the particle diameter, definin
characteristic diffusive timet`[r 2/n. Once the relaxation
of the VACF is controlled by the diffusion of vorticity, al
gebraic decay is obtained, with powers given by Eqs.~5!–
~8!. This suggests that the intuitive approach described in
preceding section is able to predict the decay of the differ
VACF’s. For slip boundary conditions, we can also comp
the amplitudes of the long-time tails. By fitting the algebra
decay, for a particle moving parallel to the interface we
an amplitudeAuu

sim,sl50.939, while the theoretical expressio
Eq. ~5! predictsAuu

th,sl50.938. For a colloid moving perpen
dicular to the interface, we should take into account that
actual distance between the colloidal particle and the wa
defined up to the resolution of the lattice itself@15#. This
indeterminacy is important in this case because the dista
to the wall is small, and a power of this distance enters in

FIG. 3. Log-log plot of the VACF of a disk of radiusr 51.5 at
a distanceh55.5 from a slip surface, in a fluid of viscosityn
50.6. The lines correspond to the theoretical prediction for
asymptotic decay.

FIG. 4. Log-log plot of the VACF of a disk of radiusr 52.5 at
a distanceh55.5 from a stick surface, in a fluid of viscosityn
51/6. The lines corresponding to the asymptotic decays are
placed to facilitate the comparison.
a

e
nt
e

t

e
is

ce
e

expressions for the amplitudes. In Fig. 3, the nominal d
tance between the disk and the interface ish55.5. The simu-
lation gives an amplitudeA'

sim,sl59.85, while Eq.~6! predicts
A'

th,sl510.16 for a real distanceh55.1. Note that the devia
tion with respect to the nominal distance is within half-latti
spacing. If we move away from the surface, this indeterm
nacy becomes less relevant. For example, for a nominal
tanceh513.5, A'

sim,sl569.0, whileA'
th,sl571.2. This shows

that the deviations of a few percent that we get with resp
to the theoretical predictions can be attributed to the discr
ness of the lattice on which we simulate the fluid.

We can also give initially a certain angular velocity to a
otherwise quiescent colloidal particle and inspect its dec
In Fig. 5 we show the log-log plot of the AVACF for both
kinds of boundary conditions. The short-time decay is n
purely diffusive due to the presence of the interface, bu
does not lead to large distortions at short times. Surprisin
it clearly shows that a slip surface induces a faster deca
the angular velocity than a stick interface, in agreement w
the predictions of the preceding section, Eqs.~10! and ~12!.

We now turn to the more realistic case in which a sphe
cal colloid of radiusa50.5 is confined by a planar interface
In Fig. 6, we show the log-log plot of the VACF’s when th
surface satisfies stick boundary conditions. The figure p
the absolute value of the VACF, because the velocity
verses its direction temporarily at short times. This is due
the small size of the particle and to the viscosity, whi
makes the particle more sensitive to the sound reflecti
from the wall at short times. The asymptotic long-time dec
is algebraic and positive, and the exponents are again
agreement with Eqs.~7! and~8! of the preceding section, an
with the predictions of Gotoh and Kaneda, Eq.~1!. In this
case, we can also compare with the theoretical prediction
Eq. ~2!. Again, we should take into account the uncertain
in the distance to the surface due to the discreteness o
lattice. The simulations reported in Fig. 6 correspond to
decay of a particle placed at a distanceh52.5 from the wall.
However, in order to compare with the theoretical pred

e

s-

FIG. 5. Log-log plot of the AVACF of a disk of radiusr 52.5 at
a distanceh55 from the interface, in a fluid of viscosityn51/6.
The lines corresponding to the asymptotic decays are displace
facilitate the comparison.
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tions for the amplitudes, we get the best agreement fo
separationh52.42, which is quite close to the nominal di
tance. By fitting the amplitudes of the asymptotic decay
the VACF’s in Fig. 6, we getAuu

sim,st50.253 andA'
sim,st

50.583, while the theoretical expressions of Eq.~2! predict
Auu

st50.2469 andA'
st50.6024. Both simulation results agre

with their theoretical counterparts to within 4%. If we r
duce the distance toh51.5, we find agreement with the the
oretical estimates for an effective separation ofh51.4, but
with an error of 7%. In Fig. 6, the asymptotes drawn cor
spond to the theoretical predictions of Gotoh and Kane
Although in the figure the asymptote corresponding to
perpendicular motion does not seem to agree well, this is
to the fact that it takes longer to reach the algebraic regi
To the best of our knowledge, this is the first direct test
the predictions of Ref.@8#.

We have displayed in Fig. 7 the AVACF for a sphere
radiusa50.5. As opposed to the two-dimensional case, n
the particle can rotate with its axis either parallel or perp
dicular to the interface. For both kinds of boundaries,
powers obtained are again in agreement with the predict
of the preceding section, Eqs.~10!–~13!. Contrary to the in-
tuition, one can clearly see how the AVACF for a partic
rotating with its axis parallel to a stick surface approach
the same algebraic decay as the one corresponding t
unbounded colloid, while the one corresponding to a s
interface decays faster. For the particular case in which
particle rotates with its axis perpendicular to a solid wall,
can also compare the theoretical prediction for the amplit
with the simulation results, because in this case the rela
rotation of the source and image ensures that all the com
nents of the velocity cancel at the surface. The nominal
tance in this case ish52.5, and we get the best agreeme
for h52.46. In this case, the amplitudeA'

sim,st52.58, while
the theoretical prediction givesA'

th,st52.56. If we would
have usedh52.42 as for the VACF, thenA'

th,st52.5, which
agrees with the simulation result within 3%, consistent w
the prediction for the VACF. In Fig. 7 one can see that

FIG. 6. Log-log plot of the VACF of a sphere of radiusr
50.5 at a distanceh52.5 from a solid interface, in a fluid of vis
cosityn50.6. The straight lines correspond to the asymptotic, lo
time behavior predicted by Gotoh and Kaneda.
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AVACF for rotation perpendicular to the stick surface a
proaches the theoretical prediction, Eq.~13!, asymptotically.

Finally, the presence of an interface will induce rotati
in an initially translating disk parallel to the wall, and tran
lation in an initially rotating disk. The decay of these cro
motions for a 2D disk is shown in Fig. 8 for both kinds o
boundary conditions. Initially, the corresponding velocity
zero, which explains the short-time increase in the plots. T
decay at long times is also algebraic, with the same ex
nent, irrespective of the particular boundary condition co
sidered. In fact, the angular velocity in Fig. 8~a! is deter-
mined by the vorticity induced by the image source. On
other hand, the velocity observed in Fig. 8~b! is due to the
flow field generated by the image dipole. In both cases
decays ast22 in 2D, in general ast2d/211, i.e., the algebraic
decay due to a dipolar source. Note that this is independ
of the specific boundary conditions, and it arises purely a
consequence of the confinement. However, for stick bou
ary conditions the induced velocity reverses its direction
motion at long times due to the influence of the sound
flected back at the boundary. Correspondingly, in Fig. 8
have displayed the absolute value of the induced velocity
a stick interface.

IV. DISCUSSION

In this paper we have studied the effect of an interface
the short-time dynamics of a suspended particle. The r
tional and translational diffusion become anisotropic due
the presence of a surface, which induces, in general, a fa
decay of motions perpendicular to it.

We have also shown that the asymptotic algebraic de
of the velocity of a particle is sensitive to the specific boun
ary conditions considered. In most cases, stick bound
conditions induce a faster decay of the hydrodynamic ex
tations than slip boundary conditions, and the AVACF d
cays with one power faster than the corresponding VAC
However, we also find that for rotation with the axis paral

-

FIG. 7. Log-log plot of the AVACF of a sphere of radiusr
50.5 at a distanceh52.5 from the interface, in a fluid of viscosity
n50.6. All curves correspond to stick boundary conditions, exc
for the one in which it is explicitly indicated. The liney;t25/2 is
displaced to facilitate the comparison.
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FIG. 8. Log-log plot of the induced cross motion of a disk of radiusr 52.5 at a distanceh54.5 from the interface, in a fluid of viscosity
n51/6. For stick boundary conditions we plot the absolute values, because the induced velocities reverse their direction at lo
Velocities and angular velocities are expressed in the units introduced in Sec. III.~a! Angular velocity of an initially translating disk.~b!
Velocity of an initially rotating disk. The lines corresponding to the asymptotic decays are displaced to facilitate the comparison.
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to the interface the behavior is unexpected: for a stick surf
the AVACF decays slower than for slip boundary condition

The decay of the perturbations is dominated by mom
tum diffusion at long times. For this reason, the onset of
asymptotic regime only occurs for times of ordertw . From
the expressions for the amplitudes in Sec. II, it would se
that the largerh is, the larger is the amplitude of the alg
braic tail. However, since it is necessary to wait longer
enter the asymptotic regime, the actual amplitude is sma
As can be seen in Table II, if we express the velocity cor
lation functions in units oft/tw , the amplitude always de
creases withh ~ash2d for rotation andh2(d12) for rotation!.
Of course, the velocity and angular momentum of a part
in an unbounded fluid would exhibit the usual algebraic
cay for times larger thant` . This implies that for distance
h@r , we will first observe the usualt2d/2 decay and, only
after a time that is a factor (h/r )2 larger, a crossover to th
behavior induced by the presence of the interface.

We focused our analysis on the single-particle case. H
ever, our results should also apply to the case of a collo
suspension close to an interface. Due to the linearity of
drodynamics, the power law of the VACF will not be mod
fied. Only its amplitude will differ from the prediction o
Gotoh and Kaneda@8#. If the particles can move in random
directions, at long times the lowest decaying perturbat
will be the dominant one. As an example, for the case
translation in 3D, thet25/2 decay related to the motion pa
allel to the surface will be dominant at long times. In order
extract the decay of the perpendicular motion, it will be ne
essary to restrict the motion of the particles, e.g., by apply
external fields.

From the experimental point of view, it may be easier
analyze the mean-square displacement,D[^@rW(t)

TABLE II. Scaling of the amplitudes of the VACF withh at the
onset of the asymptotic regime, when time is expressed in unit
the diffusive timetw . For d52, Cv

' is not defined.

Cv
uu Cv

' Cv
uu Cv

'

Slip h2d h2d h2(d12) h2(d12)

Stick h2d h2d h2(d12) h2(d12)
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2rW(0)#2&, which is related to the integral of the VACF,

D~ t !52dtS E
0

t

Cv~ t8!dt82
1

t E0

t

t8Cv~ t8!dt8D . ~14!

In Fig. 9 we show the time-dependent diffusion coe
cient, D(t)[d„D(t)…/dt, for the motion of a single sphe
both in an unbounded fluid and in the presence of a si
wall. We have considered separately the case of paralle
perpendicular motion with respect to the interface. The p
ence of the wall does not introduce major qualitative
tures, except for the saturation of the diffusion coefficien
a smaller value and for the more pronounced peak at
times. Therefore, it is the analysis of the time derivative
D(t) which will show more clearly the qualitative diffe
ences induced by the wall on the dynamics of the partic
At finite volume fractions the asymptotic value will be mo
fied, but the qualitative features will remain.

of

FIG. 9. Mean-square displacement of a spherical particle o
dius r 50.5 at a distanceh52.5 from a stick surface, in a fluid o
viscosityn50.6.
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In this paper we have considered the situation in whic
single surface is present. We have also presented an intu
picture along with the simulations, which relies on t
method of images. One might be tempted to apply the sa
method for a colloidal suspension confined between
walls, or inside a cylinder. However, in this case there m
be situations where sound modes propagate diffusivel
stick boundary conditions apply@9#. Then, the assumption
that the dynamics is controlled by vorticity is no longer va
and the algebraic decays for the VACF will differ from th
predictions based on the image scheme obtained here.
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