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Algebraic decay of velocity fluctuations near a wall
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Computer simulations of the dynamics of a colloidal particle suspended in a fluid confined by an interface
show that the asymptotic decay of the velocity correlation functions is algebraic. The exponents of the long-
time tails depend on the direction of motion of the particle relative to the surface, as well as on the specific
nature of the boundary conditions. In particular, we find that for the angular velocity correlation function, the
decay in the presence of a slip surface is faster than the one corresponding to a stick one. An intuitive picture
is introduced to explain the various long-time tails, and the simulations are compared with theoretical expres-
sions where availabl¢S1063-651X98)00612-6

PACS numbgs): 66.20-+d, 83.20.Jp, 05.46:j, 82.70.Dd

. INTRODUCTION +D))%%t92], whered is the dimensionality of the syster,
the mass of the particley and v are the density and the

The dynamical behavior of bulk colloidal suspensions is kinematic viscosity of the solvent, respectively, ddds the
on the whole, fairly well understoofl]. By means of dif- diffusion coefficient of the tagged particle. As was already
fusing wave spectroscopPWS) [2,3], the time regime in  argued by Alder and Wainwright, this behavior is quite gen-
which hydrodynamic modes relax has been studied, and evegral as a consequence of the conservation of momentum. The
in this regime, experiments and theory are in agreemen@rgument also implies that the angular velocity autocorrela-
Whereas DWS has been applied to study the dynamics iion function (AVACF) of a tagged particle with angular
bulk suspension, the effect of confining surfaces on the dyvelocity w(t), C,(t)=(w(t)-»(0)), will decay algebra-
namics is less well understood, despite its relevance in situcally at long timesC,,(t)~ 14%*"* [6], and this has indeed
ations of great practical interest, such as diffusion in porou®een found in computer simulatiofig]. The study of corre-
media. lation functions is also interesting because their integrals are

In this paper we concentrate on the simplest possible corf€!atéd to transport coefficients, connecting thus the dynami-
fining geometry, namely, a semi-infinite fluid confined by acal properties of the constituent particles of the system with

; ; -~ {ts macroscopic response. In particular, the time-dependent
lanar interface. It is well known that the presence of a singlé—>, M@ S i .
P P 9 diffusion coefficient is obtained as the integral of the VACF.

wall modifies the hydrodynamc response of the fluid, anq It The effect that a bounding surface has on the decay of the
has been suggested that this feature is used by some micro-

organisms to enhance their motilig]. We will focus on the velocny of an initially moving particle has been analyzed
) ) . . theoretically by Gotoh and Kaned&]. These authors con-
dynamics of colloidal particles close to a surface at time

scales short compared to the time it takes the particles t5|dered the VACF of a single sphere of radiuat a distance

displace over a distance comparable to their own radius. ThiH from asticksurface, i.e., an interface where the velocity of

corresponds to the “short-time” regime in the dynamics oft’sIl1e fluid and the surface are equal. They showed, by a per-
P 9 y turbative calculation that becomes exact for asymptotically

colloidal suspensions, in which hydrodynamic excitations . : X
; ) : . ; long times, that the wall generates both an anisotropic relax-
decay. In this regime, the particles experience the influence

of such modes. When, in what follows, we refer to “long dtion and that it modifies the power law of the long-time

! " ; . Igebraic decay. If the time needed for vorticity to diffuse the
times,” we mean the time scale of the asymptotic decay of,. i N

L S . . : distance between the particle and the waltjs=h</v, they
this “short-time” regime. For a typical suspension, these

times are of order-10"8 s, while the time it takes a par- predict for timest> 7,

ticle to displace over a distance equal to its radius is much
longer (~10°2 s). lepy < 2 il LA 1
_ _ cliy=—+0 , Cl(y=—+0 (1)
Until the early 1970s it was thought that the decay of the t5/2 72 t72 t9/2

velocity of a suspended particle would be exponential. How-
ever, in their pioneering work, Alder and Wainwrigf§]  with the amplitudes given by
showed that the velocity autocorrelation functiGnACF),

C,(t)=(v(t)-v(0)), of a tagged particle in a hard-sphere _MCL‘(O) h? ~MC,(0) h?
fluid moving with velocity v(t) exhibited an algebraic w0 @an® Tt 42y (4mn)3?
decay at long times,C,(t)=(d—1)MC,(0)/[dp(4m(v )

whereCU(O) andC; are the initial values of the VACF for
*Present address: Unilever Research, Port Sunlight Laboratorg particle moving initially parallel and perpendicular to the
Quarry Road East, Bebington, Wirral L63 3JW, U.K. wall, respectively.
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One may expect that the change in boundary conditions &
the surface will make a qualitative difference for the dynam- ‘
ics of the colloids. For example, one may consideslip
interface, where the tangential component of the stress ig “T G—-> u,¥ d)

a) b)

continuous across the surface, and which is characteristic o
a fluid/fluid interface. In fact, there exist examples where the
dynamics of colloidal particles is sensitive not only to the i

confinement, but to the specific behavior of the velocity field .
at the interfacg9]. —hz

Therefore, we have performed computer simulations of
the short-time dynamics of a particle in the presence of both
a slip and a stick surface. We have focused both on thg
VACF and AVACF, as these two functions are most directly ) . . .
linked to experimentally observable quantities. Before pre- FIG. 1. Image particle for a translating colloid above a slip
senting our results in Sec. IIl, we first introduce an intuitive Surface, placed initially & z. (a) Parallel motion{b) perpendicular
picture that will allow us to interpret our results, and pro- motion.

vides a physical way of understanding the modifications thag, .. nt for this by using the standard method of images. In
a bounding surface induces in the relaxation of the hydrodyg,is method, one places additional sources in the region of
namic modes. We conclude the paper with a discussion Ofpace not accessible to the system to enforce the desired
our results. boundary condition at the interfa¢g1]. However, a simple
point image, as is used when considering mass diffusion or
[l. THEORETICAL DESCRIPTION electrostatic potentials, is not sufficient to enforce a bound-
ary condition for a vectorial field, such as the velocity. To be

troﬂ—gnghgggrgfad%??g I(I:SnOfesat-ﬁ\?gglﬂaélr%%rtlr?;?nlii ﬁq%rgemore precise, for slip boundary conditions, we need only
y Y 9 Y Y mpose the condition that there is no flux of momentum

in the solvent. In the case of an unbounded fluid, the local ; . . .

: A - “across the interface. This can be accomplished by a simple

amplitude of the sound modes excited initially by the particle, ; ; . ) .

" . ... Image particle moving with the appropriate velocity. For

decays much faster than the vorticity, which relaxes dn‘fu—stick boundary conditions. however. all the components of
sively. The algebraic taiC,(t)~1/t%? can be simply under- Y ’ ’ P

stood as a counling of the velocity of the particle to thethe velocity have to vanish at the surface. In this case, a
piing y P simple point image is not enough to fulfill the conditions at

diffusion of vorticity [10]. The velocity fieldv of a low  the wall. Blake[4] worked out the complete set of images
Reynqlds number incompressible flow satisfies the diffusiorheeded to reproduce the steady flow corresponding to an ini-
equation, tial point source. It has even been argued that at finite fre-
quency, the flow in the presence of a solid wall cannot be
described with a finite set of image singularit/d2]. None-
theless, rather than attempting a rigorous description of vor-
ticity diffusion in the presence of a solid surface, in this

A partide of massM located Origina”y afo and with Slmpllfled theory we will Con'Sider the Simplest image set
velocity Uy, will create a flow field in the fluid. This field s N€cessary to provide the basic features of the long-time hy-

equal to the one generated by a small fluid elen@nicen- drodynamic behavior. Therefore, we will characterize the
.- - - > solid surface by imposing that no momentum can be trans-
tered in rg, with initial velocity vy such that Mug

- ported along it. This description produces a boundary condi-
=pvoéV. In the limit 5V—0, the initial velocity field is  tion that resembles more a porous surface rather than a real
v(r,t=0)=(MUq/p) 8(r —ry). From Eq.(3), it then follows  solid wall, because there can still be momentum flux across
the wall, but it contains the basic feature that a solid surface
resists the flow of fluid along it. The comparison with the
simulations will show that this assumption predicts the
v(r,t)= —d/z(l_”) proper temporal decay at long times, although it is in general
(4mvt) quantitatively inaccurate, as could be expected.
Let us first consider that the particle is placed at a distance

hz above a slip interface located &t 0. If at timet=0 the

)(1— drr) [ -ve, (4  particle has a velocity,y, at later times the velocity at the
same point will be expressed as the sum of the velocity gen-

. . . . erated by the particle itself plus the one generated by an
wherey is the incomplete gamma function. From the previ-. located ath> . ith th locit
ous expression, it is easy to check that indeed the velocitim?ge source locate Zmoving wi € same velocity

induced by a localized perturbation decays asymptotically aoy: as displayed in Fig. (). As can be derived from Eq.
1492 The presence of a single bounding surface will not(4). the long-time decay is given by

disturb the diffusive decay of the velocity at long times due 2(d—1)

to vorticity. The only feature we have to take into account is usl(t) = Yo ] (5)
the fact that the wall will modify the induced flow field. We I d  (amt)¥2 | a2

O-+

~O

v (r,t)
ot

= vV (r,1). 3)

1 d r?
Z(WrZ)d/ﬂ 2 4t
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In order to avoid confusion when we consider later a stick .
surface, we have used the superscript “sl” to indicate that b
the particle is moving in the presence of a slip interface, asl A SN R
opposed to the superscript “st” labeling a stick surface. hz O ) ( O )
The interface does not modify the power of the temporal \__‘/ \\__‘/
decay in this particular situation. However, if the particle
moves perpendicularly to the interface, then the image par
ticle has to move in the opposite direction, as shown in Fig. VN ,"‘\
1(b) In this case, the velocity at long times is given by l O ) l O )
H A / \ I
-hz \\_,/ ~_.’
S'(t) 47v 0h2 L0 1 ®
ul(t)= ,
1 (d+2)(4ﬂ_vt)d/2+l td/2+2

FIG. 2. Image set for a disk above a surface rotating with its
which shows that the interface induces a faster decay of thgxis parallel to the wall, placed initially 4tz (a) Slip surface(b)
VACF, due to the interaction with the image. stick surface.

If we consider a wall where stick boundary conditions are
satisfied, then the images should be modified accordingly. If

the particle is moving initially at a distan¢e and parallel to wXT= J e lek (10 (1-kk) - (1 0)sin(K- n)dK,
the wall with velocityu,y, the image, located at hz, has to 9)
move in the opposite direction with velocityuo§/. We then .
get asymptotically, where the vector means a vector joining the center of the
object to a point on its surface. Moreovéis the moment of
s 6 voh? 1 inertia of the particle an(ﬁo is the initial angular velocity of
U= G-y 2) amniz1 Olzz) D the fluid, which is related to the total initial torqdeapplied

by the force distribution F through T=/dnFxn
which for three dimensions3D) coincides with the decay =|(,5(t). Note that there is no net momentum transmitted
predicted by Eq(1), and recovers the proper dimensional o the system. Similar to the case of the velocity, the magni-

behavior of the amplitude. However, as already mentionedy,de of the torque is related to the initial angular velocity of
with this intuitive approach the numerical factor of the tail the particle in such a way th&[iza;o/p wherea?o is its

does not coincide with the prediction of E@). initial angular velocity.

For motion .perpend|cullar to the mterface_, we need to take | o4 o first consider that the colloid rotates in the presence
a quadrupole in order to Impose that_there 1SNo flux_parallebf a slip surface. If the axis of rotation is parallel to the
to the Wallhfor_ Exanrplg, in three dlmen5|onfs, besides thyerface, then in order to ensure that there is no component
Image at—hz with velocity —upZ, one can enforce a van- t ihe yelocity field through the interface, we should place an
ishing parallel velocity "’.‘t the wall by placing an image ring image vortex which rotates in the opposite sense, as depicted
on the surface at a distancen Zrom the origin, with @ i, rjg 2(a). According to Eq.(9), this initial perturbation

strength twice thg .strength of the initial source, pointinggives fise to an asymptotic decay of the angular velocity
away from the origin. In this case, the combination of the

sources gives 34m?  heT

d+1 (4wvt)d/2+2+o(td/2+3)' (10)

()=

st Uoh4 1
ul(t):A(47TVt)d/2+2 +0 {d2+3 )" 8) _ o . .
If the axis of rotation is perpendicular to the interface, a
B 2 s ) , . corotating source and image suffice to ensure that there is no
whereA=24m7"/7 in 3D. Itis worth noting that the algebraic pq¢ fix of momentum across the interface. This combination

decay is characterized by a large power, 7/2 in three dimeng,qs 1o a slower decay of the vorticity than in the previous
sions. Clearly, the stick wall always induces a faster decay Oéeometry

. S > o . namely,
the velocity than the slip interface for motion in any direc-
tion, since it damps momentum more efficiently than a liquid 8 1
interface. For both kinds of interfaces, the motion perpen- slepy— o7
_ (1) 751 Ol w3 |- (11
dicular to the surface always decays faster. d+1 (47pt)d2+t ter

We can also use this intuitive approach to analyze how

the interface will modify the decay of the angular velocity  In the case of stick boundary conditions, when the axis of
autocorrelation functions. In this case, we should look at theotation is parallel to the interface, the velocity along the

decay of the angular velocity if initially a torque is applied at wall is zero if we take a corotating image particle, as dis-

the particle. If we calh a vector normal to the surface of the played in Fig. 2b) In this case the decay is then

particle, located afo, the angular velocityf) induced by an

initially applied force distributionF(r,t)=F[&(r —r,—n) Si(f) = 87 40 (12)

S . ] d2+1 di2+2)°
8(r—rgy+n)]8(t), can be shown to satisfyl3] (4mwt) t
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TABLE |. Powers of the algebraic tail for the VACF and the end, we have used the lattice-Boltzmann model to describe
AVACF in d dimensions. Fod=2, C,, is not defined. the fluid. The state of the fluid is specified by the average
number of particlesn(c,r,t), with velocity ¢, at each lattice

slip stick unbounded siter at timet. The time evolution of the distribution func-
cll d d tions is determined by the discretized analog of the Boltz-
v 5 5+1 mann equatiofl5], in which then(c,r,t) evolves in discrete
time in two steps: propagation and collision. Collisions are
C, g+1 g+2 g specified such that the time evolution of the hydrodynamic

fields satisfies the linearized Navier-Stokes equations for an
ol d isothermal fluid 15]. In this method, the solid surface which
g §+2 §+1 defines the colloidal particle and the confining surface are
treated on the same footing, by modifying appropriately the
ct d.4 da., d., collision step of the nodes adjacent to the surf4@&$ Stick
2 2 2 boundary conditions are ensured by imposing bounce-back
of the incomingn(c,r,t) along the links joining nodes of the
surface and the fluid, while slip boundary conditions are en-

which coincides with Eq(11), and has an amplitude which forced by specular reflection. Stick boundary conditions are
is twice the one corresponding to a rotating particle in anlways satisfied at the surface of the colloidal particle, while
unbounded fluid. Finally, if the axis is perpendicular to thewe change from stick to slip boundary conditions for the
interface, the image should rotate in the opposite sense igurface that bounds the fluid. The equations of motion of the
order to avoid the flow along the wall. This leads then to particle are integrated using the self-consistent method de-
scribed in Ref[7]. We calculated the VACF by giving an

initial velocity, 5(0), to acolloidal particle in an otherwise
quiescent fluid. In this description of the fluid, fluctuations
are absent. Nonetheless, correlating the initial velocity of the

In this particular case, due to the symmetry of the twofreely moving particlev(0) with its subsequent valuegt)
sources, all the components of the velocity will vanish at thevhile it relaxes is, according to Onsager’s regression hypoth-
solid surface. This implies that the amplitude also has to b&sis, equivalent to calculating the VACF in a “real” fluctu-
asymptotically correct in this case. ating fluid [16]. The initial velocity given to the particle is

The previous analysis shows that the AVACF behavesufficiently small to ensure that its displacement is negligible
differently close to an interface than the VACF. For an un-compared to the lattice spacing. Our units are such that the
bounded fluid, the AVACF always decays with one powermass of the lattice particles, the lattice spacing, and the time
higher than the corresponding VACF. A stick surface alwaysstep are all unity, the density has a value of 24, and the
produces a faster decay on the VACF than a slip interfacespeed of sound has a value of 12. The mass of the col-
The behavior of the AVACF in the presence of an interfaceloidal particle is chosen to correspond to neutral buoyancy.
is not simply related to the corresponding VACF. In fact, weln all cases, the VACF is only calculated for times less than
arrive at the rather surprising prediction that, for rotationthe time it takes for a sound wave to cross the system, so
parallel to the interface, slip boundary conditions yield athere are no finite-size effects to consider. In most of the
faster decay of the AVACF than stick boundary conditions. cases, the asymptotic algebraic decay is reached within the

In Table I we have summarized the different exponents ofimulation time, although in a few cases it is only the ap-
the VACF and AVACF as a function of the geometry and theproach to it that is observable. We will start by analyzing the
boundary conditions. decay of the correlation functions of a disk in two dimen-

Thus far we have focused on the decay of the velocitysions, because a more detailed analysis is feasible since we
field generated by a moving particle, disregarding its Brown-can reach longer times than in their 3D counterparts. After-
ian motion. Diffusion of the colloid during the decay of the wards, we will focus on the more realistic situation of a
flow field will lead to mode coupling between flow and dif- sphere in three dimensions, where we can compare with ex-
fusion. For an unbounded fluid, this so-called mode-couplingict theoretical predictions].
effect modifies the amplitude of the correlation functions, but  Figures 3 and 4 show a log-log plot of the VACF for a
not the power law characterizing the long-time fdif]. Us-  disk in a 2D fluid both for slip and stick boundary condi-
ing mode coupling theory, it is easy to show that, as in thdions. For the sake of comparison, we also plot the VACF of
unbounded fluid, mode-coupling leads now to the same exthe same particle in an unbounded fluid. The analysis of the
pressions obtained in this sectionifis substituted byy ~ preceding section assumed that only diffusion of velocity is
+D, whereD is the diffusion coefficient of the colloidal relevant. This is indeed true in the asymptotic long-time re-
particle. gime, but at sufficiently short times, compressibility effects,
related to the emission and reflection of sound waves, will
modify the relaxation of the colloid. In Figs. 3 and 4, the
diffusive decay of the VACF is only recovered at times of

We have performed computer simulations to study theorder 7,,, when momentum has diffused the distance be-
VACF and AVACF of a spherical particle suspended in atween the particle and the wall. This is also true for the
fluid, in contact with both a stick and a slip interface. To thisparticle in the unbounded medium, although in this case mo-

(4)? h2T

St —
ol (=977 (4mpt)d2+2

(13

+O td/2+3) ’

lll. RESULTS
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0l parallel N —-— slip
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-yt N} y~t
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FIG. 3. Log-log plot of the VACF of a disk of radius=1.5 at FIG. 5. Log-log plot of the AVACF of a disk of radius=2.5 at

a distanceh=5.5 from a slip surface, in a fluid of viscosity @ distanceh=>5 from the interface, in a fluid of viscosity=1/6.

=0.6. The lines correspond to the theoretical prediction for thel N€ lines corresponding to the asymptotic decays are displaced to
asymptotic decay. facilitate the comparison.

mentum has to diffuse over the particle diameter, defining @&xpressions for the amplitudes. In Fig. 3, the nominal dis-
characteristic diffusive timer,=r?/v. Once the relaxation tance between the disk and the interfaces5.5. The simu-
of the VACF is controlled by the diffusion of vorticity, al- |ation gives an amplituda$™=9.85, while Eq/(6) predicts
gebrai(; decay is obtained,. Wit.h powers given by E(5$— AMs'=10.16 for a real distance=5.1. Note that the devia-
(8). This suggests that the intuitive approach described in thggp, ith respect to the nominal distance is within half-lattice
preceding section is able to predict the decay of the differengpacing. If we move away from the surface, this indetermi-
VACF's. For slip boundary conditions, we can also compare,acy hecomes less relevant. For example, for a nominal dis-
the amplitudes of the Iong—Ume tails. By f|tt|ng the algebraic,ceh= 13.5, ASmS=69.0, while AM'=71.2. This shows
decay, f9r a pg{:}lgle moving parallel to the |_nterface we 9€%hat the deviations of a few percent that we get with respect
an amplitudeAj 'h:|0'939' while the theoretical expression q, the theoretical predictions can be attributed to the discrete-
Eq. (5) predictsAj[**=0.938. For a colloid moving perpen- ness of the lattice on which we simulate the fluid.
dicular to the interface, we should take into account that the We can also give |n|t|a||y a certain angular Velocity to an
actual distance between the colloidal particle and the wall i%therwise quiescent C0||0ida| partic'e and inspect |ts decay_
defined Up to the resolution of the lattice ItSE]f'S] This In F|g 5 we show the |Og_|og p|0t of the AVACF for both
indeterminacy is important in this case because the distanggnds of boundary conditions. The short-time decay is not
to the wall is small, and a power of this distance enters in thfburely diffusive due to the presence of the interface, but it
does not lead to large distortions at short times. Surprisingly,
it clearly shows that a slip surface induces a faster decay of
the angular velocity than a stick interface, in agreement with
the predictions of the preceding section, E4€) and(12).

We now turn to the more realistic case in which a spheri-
cal colloid of radiusa= 0.5 is confined by a planar interface.

“é In Fig. 6, we show the log-log plot of the VACF's when the
§“ surface satisfies stick boundary conditions. The figure plots
g the absolute value of the VACF, because the velocity re-
S verses its direction temporarily at short times. This is due to
Ei} _a5 | — parallel AN the small size of the particle and to the viscosity, which
= T pempendiutar SO makes the particle more sensitive to the sound reflections
ot AN from the wall at short times. The asymptotic long-time decay
=105 - ___ y-t: \'{‘_*-A.,‘ is algebraic and positive, and the exponents are again in
"""""" y-t N agreement with Eqg7) and(8) of the preceding section, and
—125 . . . . - b with the predictions of Gotoh and Kaneda, Ed). In this
40 30 20 -10 0.0 1.0 2.0

case, we can also compare with the theoretical predictions of
Eqg. (2). Again, we should take into account the uncertainty
FIG. 4. Log-log plot of the VACF of a disk of radius=2.5 at  in the distance to the surface due to the discreteness of the
a distanceh=5.5 from a stick surface, in a fluid of viscosity ~ lattice. The simulations reported in Fig. 6 correspond to the
=1/6. The lines corresponding to the asymptotic decays are disdecay of a particle placed at a distarice 2.5 from the wall.
placed to facilitate the comparison. However, in order to compare with the theoretical predic-

In(t/it,)
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-2
-4 unbounded
- parallel
_6 50 | —_— pere?ndicular
_ . . y~t_ 7:
= " N‘,: . y=r5/[601|:mh5(t/‘rw)7,2]
ma 33 — - = parallel, slip
S ©
g -10 y
= A - F
é 1 §3 10.0
S 2
33 -14 parallel \ =
9 — —- perpendicular I \ K_\?
= -16 —-— unbounded i 2 € -150
£ S (m:w)m] ! \\\* .
A8 |  ——. y=r3/[61l:1/2hj(t/‘l:w)m] §{\ \\\
== y=ri24n K (1 )] =, N
-20
-20.0 ! : ; ; !
-22 . - - L -20 -1.0 0.0 1.0 20 3.0
2 -1 0 1 2 3 In(#'t,)
In(t/t,)

] FIG. 7. Log-log plot of the AVACF of a sphere of radius
FIG. 6. Log-log plot of the VACF of a sphere of radius  _q 5 at a distanca=2.5 from the interface, in a fluid of viscosity
=0.5 at a distancé=2.5 from a solid interface, in a fluid of vis- ;,_ 6. All curves correspond to stick boundary conditions, except
cosity v=0.6. The straight lines correspond to the asymptotic, long+yr the one in which it is explicitly indicated. The line~t =52 s
time behavior predicted by Gotoh and Kaneda. displaced to facilitate the comparison.

tions fo_r the amplltudgs, we get the best agreement fOf AVACF for rotation perpendicular to the stick surface ap-
separatiorh=2.42, which is quite close to the nominal dis- 1‘proaches the theoretical prediction, E&3), asymptotically.
tance. By fitting the amplitudes of the asymptotic decay of  Einaly, the presence of an interface will induce rotation
the VACF's in Fig. 6, we getAj™*=0.253 andAT™ iy an initially translating disk parallel to the wall, and trans-
=0.583, while the theoretical expressions of E2). predict  |ation in an initially rotating disk. The decay of these cross
Ai'=0.2469 andA$'=0.6024. Both simulation results agree motions for a 2D disk is shown in Fig. 8 for both kinds of
with their theoretical counterparts to within 4%. If we re- boundary conditions. Initially, the corresponding velocity is
duce the distance to=1.5, we find agreement with the the- zero, which explains the short-time increase in the plots. The
oretical estimates for an effective separationhef1.4, but  decay at long times is also algebraic, with the same expo-
with an error of 7%. In Fig. 6, the asymptotes drawn corre-nent, irrespective of the particular boundary condition con-
spond to the theoretical predictions of Gotoh and Kanedssidered. In fact, the angular velocity in Fig(aB is deter-
Although in the figure the asymptote corresponding to themined by the vorticity induced by the image source. On the
perpendicular motion does not seem to agree well, this is duether hand, the velocity observed in FigbBis due to the
to the fact that it takes longer to reach the algebraic regimeflow field generated by the image dipole. In both cases, it
To the best of our knowledge, this is the first direct test ofdecays a$~ 2 in 2D, in general as~%?*1, i.e., the algebraic
the predictions of Ref8]. decay due to a dipolar source. Note that this is independent
We have displayed in Fig. 7 the AVACF for a sphere of of the specific boundary conditions, and it arises purely as a
radiusa=0.5. As opposed to the two-dimensional case, nowconsequence of the confinement. However, for stick bound-
the particle can rotate with its axis either parallel or perpenary conditions the induced velocity reverses its direction of
dicular to the interface. For both kinds of boundaries, themotion at long times due to the influence of the sound re-
powers obtained are again in agreement with the predictioniected back at the boundary. Correspondingly, in Fig. 8 we
of the preceding section, Eqd.0)—(13). Contrary to the in- have displayed the absolute value of the induced velocity for
tuition, one can clearly see how the AVACF for a particle a stick interface.
rotating with its axis parallel to a stick surface approaches
the same algebraic decay as the one corresponding to an
unbounded colloid, while the one corresponding to a slip
interface decays faster. For the particular case in which the | this paper we have studied the effect of an interface on
particle rotates with its axis perpendicular to a solid wall, Weihe short-time dynamics of a suspended particle. The rota-
can also compare the theoretical prediction for the amplitudgonal and translational diffusion become anisotropic due to
with the simulation results, because in this case the relativehe presence of a surface, which induces, in general, a faster
rotation of the source and image ensures that all the compgecay of motions perpendicular to it.
nents of the velocity cancel at the surface. The nominal dis- \ye have also shown that the asymptotic algebraic decay
tance in this case iB=2.5, and we get the best agreementof the velocity of a particle is sensitive to the specific bound-
for h=2.46. In this case, the amplitud€™*=2.58, while  ary conditions considered. In most cases, stick boundary
the theoretical prediction giveA™=2.56. If we would conditions induce a faster decay of the hydrodynamic exci-
have useth=2.42 as for the VACF, theA‘f‘St: 2.5, which  tations than slip boundary conditions, and the AVACF de-
agrees with the simulation result within 3%, consistent withcays with one power faster than the corresponding VACF.
the prediction for the VACF. In Fig. 7 one can see that theHowever, we also find that for rotation with the axis parallel

IV. DISCUSSION



7294 PAGONABARRAGA, HAGEN, LOWE, AND FRENKEL PRE 58

-6.0 -6
— sfick (b) — stick
@ ——-slip 7t o ——-slip
—— yt? e ~o —— yef?

In[lv®)|]

120 " " . . . . . .
-3.0 =20 -1.0 0.0 1.0 20 -2 -1 0 1 2 3

Ingm,) In¢s,)

FIG. 8. Log-log plot of the induced cross motion of a disk of radias2.5 at a distance=4.5 from the interface, in a fluid of viscosity
v=1/6. For stick boundary conditions we plot the absolute values, because the induced velocities reverse their direction at long times.
Velocities and angular velocities are expressed in the units introduced in Se@) Wingular velocity of an initially translating diskb)
Velocity of an initially rotating disk. The lines corresponding to the asymptotic decays are displaced to facilitate the comparison.

to the interface the behavior is unexpected: for a stick surface- F(O)]2>, which is related to the integral of the VACF,
the AVACF decays slower than for slip boundary conditions.
The decay of the perturbations is dominated by momen-
tum diffusion at long times. For this reason, the onset of the t T e
asymptotic regime only occurs for times of ordgr. From A(t)IZdt( focv(t )dt _ffot C,(t)dt ) (14)
the expressions for the amplitudes in Sec. Il, it would seem
that the larget is, the larger is the amplitude of the alge-
braic tail. However, since it is necessary to wait longer to In Fig. 9 we show the time-dependent diffusion coeffi-
enter the asymptotic regime, the actual amplitude is smallegient, D(t)=d(A(t))/dt, for the motion of a single sphere
As can be seen in Table Il, if we express the velocity correhoth in an unbounded fluid and in the presence of a single
lation functions in units ot/ r,,, the amplitude always de- wall. We have considered separately the case of parallel and
creases witth (ash ™9 for rotation anch~(@*2) for rotation.  perpendicular motion with respect to the interface. The pres-
Of course, the velocity and angular momentum of a particlence of the wall does not introduce major qualitative fea-
in an unbounded fluid would exhibit the usual algebraic detures, except for the saturation of the diffusion coefficient at
cay for times larger tham.,. This implies that for distances a smaller value and for the more pronounced peak at short
h>r, we will first observe the usudl”%? decay and, only times. Therefore, it is the analysis of the time derivatives of
after a time that is a factomh(r)? larger, a crossover to the A(t) which will show more clearly the qualitative differ-
behavior induced by the presence of the interface. ences induced by the wall on the dynamics of the particles.
We focused our analysis on the single-particle case. HowAt finite volume fractions the asymptotic value will be modi-
ever, our results should also apply to the case of a colloiddied, but the qualitative features will remain.
suspension close to an interface. Due to the linearity of hy-
drodynamics, the power law of the VACF will not be modi- 1.00
fied. Only its amplitude will differ from the prediction of
Gotoh and Kanedf8]. If the particles can move in random
directions, at long times the lowest decaying perturbation
will be the dominant one. As an example, for the case of
translation in 3D, the %2 decay related to the motion par-
allel to the surface will be dominant at long times. In order to
extract the decay of the perpendicular motion, it will be nec- &
essary to restrict the motion of the particles, e.g., by applying= 995 ¢
external fields. Q
From the experimental point of view, it may be easier to

- ———
———

— e e
—————

analyze the mean-square displacemennz<[F(t) —-— unbounded
—=—= parallel
TABLE 1. Scaling of the amplitudes of the VACF with at the perpendicular

onset of the asymptotic regime, when time is expressed in units of
the diffusive timer,,. Ford=2, C, is not defined. 0.90 , , ,

o 5 10 15

cll ct cll ct i,

Slip h-d h-d h=(@+2) h=(d+2) FIG. 9. Mean-square displacement of a spherical particle of ra-
Stick h-d h-d h=(d+2) h=(d+2) diusr=0.5 at a distancé=2.5 from a stick surface, in a fluid of

viscosity v=0.6.
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